Oxidation of Pristanic Acid in Fibroblasts and Its Application to the Diagnosis of Peroxisomal b -Oxidation Defects
نویسندگان
چکیده
Pristanic acid oxidation measurements proved a reliable tool for assessing complementation in fused heterokaryons from patients with peroxisomal biogenesis defects. We, therefore, used this method to determine the complementation groups of patients with isolated defects in peroxisomal b -oxidation. The rate of oxidation of pristanic acid was reduced in affected cell lines from all of the families with inherited defects in peroxisomal b -oxidation, thus excluding the possibility of a defective acyl CoA oxidase. Complementation analyses indicated that all of the patients belonged to the same complementation group, which corresponded to cell lines with bifunctional protein defects. Phytanic acid oxidation was reduced in fibroblasts from some, but not all, of the patients. Plasma samples were still available from six of the patients. The ratio of pristanic acid to phytanic acid was elevated in all of these samples, as were the levels of saturated very long chain fatty acids (VLCFA). However, the levels of bile acid intermediates, polyenoic VLCFA, and docosahexaenoic acid were abnormal in only some of the samples. Pristanic acid oxidation measurements were helpful in a prenatal assessment for one of the families where previous experience had shown that cellular VLCFA levels were not consistently elevated in affected individuals. ( J. Clin. Invest. 1996. 97:681–688.)
منابع مشابه
Oxidation of pristanic acid in fibroblasts and its application to the diagnosis of peroxisomal beta-oxidation defects.
Pristanic acid oxidation measurements proved a reliable tool for assessing complementation in fused heterokaryons from patients with peroxisomal biogenesis defects. We, therefore, used this method to determine the complementation groups of patients with isolated defects in peroxisomal beta-oxidation. The rate of oxidation of pristanic acid was reduced in affected cell lines from all of the fami...
متن کاملA new peroxisomal beta-oxidation disorder in twin neonates: defective oxidation of both cerotic and pristanic acids.
Twin brothers were born with clinical symptoms indicating that they were suffering from Zellweger syndrome. However, instead of a generalized peroxisomal dysfunction, only very long-chain fatty acids and the pristanic acid/phytanic acid ratio were elevated in plasma and decreased oxidation of very long-chain fatty acids and pristanic acid was the only impairment found in fibroblasts. The other ...
متن کاملStereochemistry of the peroxisomal branched-chain fatty acid alpha- and beta-oxidation systems in patients suffering from different peroxisomal disorders.
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid derived from dietary sources and broken down in the peroxisome to pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) via alpha-oxidation. Pristanic acid then undergoes beta-oxidation in peroxisomes. Phytanic acid naturally occurs as a mixture of (3S,7R,11R)- and (3R,7R,11R)-diastereomers. In contrast to ...
متن کاملA comparative study of straight chain and branched chain fatty acid oxidation in skin fibroblasts from patients with peroxisomal disorders.
The beta-oxidation of stearic acid and of alpha- and gamma-methyl isoprenoid-derived fatty acids (pristanic and tetramethylheptadecanoic acids, respectively) was investigated in normal skin fibroblasts and in fibroblasts from patients with inherited defects in peroxisomal biogenesis. Stearic acid beta-oxidation by normal fibroblast homogenates was several-fold greater compared to the oxidation ...
متن کاملPhytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts.
The relationship between peroxisomal and mitochondrial oxidation of the methyl branched fatty acids, phytanic acid and pristanic acid, was studied in normal and mutant human skin fibroblasts with established enzyme deficiencies. Tandem mass spectrometry was used for analysis of the acylcarnitine intermediates. In normal cells, 4,8-dimethylnonanoylcarnitine (C11:0) and 2,6-dimethylheptanoylcarni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996